

## VIPS Phase I executive summary: Sublingual dosage forms

June 2019





BILL& MELINDA GATES foundation





## Sublingual dosage forms

### About Sublingual dosage forms

- Sublingual dosage forms are **tablets and thin films that are placed under the tongue** and rapidly dissolve to **form a gel in a small amount of saliva.**
- The gel is **absorbed via the mucosal surfaces under the tongue** inducing systemic immunity, similar to an injectable vaccine, and potentially inducing robust mucosal immunity.
- In contrast to oral ingestion vaccination, sublingual dosage forms are not intended to be swallowed or delivered to the intestinal tract.

#### Stage of development

- Sublingual dosage forms are in early-stage preclinical development for several vaccines including HIV Env protein and ETEC. The mucosal adjuvant dmLT is also being evaluated.
- Some have progressed to clinical trials including a seasonal influenza vaccine combined with a novel adjuvant in a sublingual tablet.
- Most studies of sublingual vaccines to date have **not utilised optimised sublingual dosage forms that form a gel**, which resulted in **poor immune responses.**
- Commercially available sublingual dosage forms are used to deliver allergy immunotherapies, low molecular weight drugs, and therapeutic vaccines.

BILL& MELINDA

GATES foundation









Gel-forming sublingual tablet being placed under the tongue





## Sublingual dosage forms scorecard

Comparators: Single dose vial (SDV) (liquid) and dropper or sprayer ; SDV (lyophilised) + diluent + reuse prevention (RUP) reconstitution syringe and dropper sprayer; SDV(liquid) and autodisable (AD) needle and syringe (N&S); SDV (lyophilised) + diluent and RUP reconstitution syringe and AD N&S



| Quality of evidence: Low to moderate |                       |                                                                  |                                                      |                                  | Comparators                                                                                                 |                          |                          |                                                      | Priority indicators - |           |  |
|--------------------------------------|-----------------------|------------------------------------------------------------------|------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|------------------------------------------------------|-----------------------|-----------|--|
|                                      |                       |                                                                  |                                                      | Oral/In                          | Oral/Intranasal                                                                                             |                          | Injectable               |                                                      | Country consultation  |           |  |
| VIPS Criteria                        |                       |                                                                  | Indicators                                           | Dropper of<br>sprayer<br>+ recon | r Dropper or<br>sprayer<br>- recon                                                                          | SDV AD<br>N&S<br>+ recon | SDV AD<br>N&S<br>- recon | RI*<br>Facility                                      | RI*<br>Community      | Campaigns |  |
| Primary criteria                     | Health impact         | Ability of the vaccine                                           | presentation to withstand heat exposure              | Neutral                          | Better                                                                                                      | Neutral                  | Better                   | +                                                    | ++                    | ++        |  |
|                                      |                       | Ability of the vaccine                                           | presentation to withstand freeze exposure            | Neutral                          | Better                                                                                                      | Neutral                  | Better                   |                                                      |                       |           |  |
|                                      | Coverage              | Ease of use <sup>a</sup>                                         |                                                      | Better                           | Better                                                                                                      | Better                   | Better                   | +                                                    | +                     | ++        |  |
|                                      | ∝<br>Equity<br>impact | Potential to reduce s                                            | tock outs <sup>b</sup>                               | Better                           | Better                                                                                                      | Better                   | Better                   |                                                      |                       |           |  |
|                                      |                       | Acceptability of the v                                           | accine presentation to patients/caregivers           | Neutral                          | Neutral                                                                                                     | Considerably better      | Considerably better      |                                                      | +                     | +         |  |
|                                      | Safety impact         | Likelihood of contam                                             | ination                                              | Better                           | Better                                                                                                      | Better                   | Better                   |                                                      |                       | +         |  |
|                                      |                       | Likelihood of needle                                             | stick injury                                         | Better                           | Better                                                                                                      | Better                   | Better                   |                                                      |                       |           |  |
|                                      | Economic costs        | Total economic cost                                              | of storage and transportation of commodities per dos | e Considerably better            | Considerably better                                                                                         | Considerably better      | Considerably better      | +                                                    |                       |           |  |
|                                      |                       | Total economic cost                                              | of the time spent by staff per dose                  | Better                           | Better                                                                                                      | Better                   | Better                   | ++                                                   | ++                    | +         |  |
|                                      |                       | Total introduction an                                            | d recurrent costs <sup>c</sup>                       | Neutral                          | Neutral                                                                                                     | Neutral                  | Neutral                  | * RI : Routine immunisation Given significantly more |                       |           |  |
| Secon-<br>dary<br>criteria           | Potential breadth     | Applicability of innovation to one or several types of vaccines  |                                                      |                                  | All vaccines against mucosal pathogens that can<br>be prepared in a dry format are potential<br>candidates. |                          |                          | ++                                                   | ++ importance         |           |  |
|                                      | of innovation         |                                                                  |                                                      | ne hiet                          |                                                                                                             |                          |                          | +                                                    | Given more importance |           |  |
| Se d                                 | use                   | bility of the technology to facilitate novel vaccine combination |                                                      |                                  | No                                                                                                          |                          |                          |                                                      | Kept neutral          |           |  |

<sup>a</sup> Ease of use can prevent missed opportunities and impact ability for lesser trained personnel to administer the vaccine, including self-administration

<sup>b</sup> Based on the number of separate components necessary to deliver the vaccine or improved ability to track vaccine commodities

° Total economic cost of one-time / upfront purchases or investments required to introduce the innovation and of recurrent costs associated with the innovation (not otherwise accounted for)

## Sublingual dosage forms: Antigen applicability



- Sublingual dosage forms can potentially be applied to vaccines against mucosal pathogens that can be prepared in a dry format.
- Vaccines that are **currently delivered parenterally are likely to be suitable** for this innovation, but subunit and non-live vaccines are likely to require a mucosal adjuvant (such as dmLT), and none are approved at present.
- Live vaccines that are currently delivered intranasally may also be suitable.
- A sublingual dosage form is an **attractive option for an HIV** vaccine.
- Examples on the VIPS priority antigen list that might also be appropriate for sublingual delivery include **HPV, IPV** (both might require a mucosal adjuvant however) and **the live VSV-vectored Ebola vaccine**.





BILL& MELINDA GATES foundation





## Sublingual dosage forms: Assessment outcomes

#### **KEY BENEFITS**

- May offer improved heat stability and freeze resistance over liquid vaccines given the dried format.
  - Potential positively impact on coverage and equity:
  - **+ Easy to use:** simplify preparation and delivery and may **reduce errors and improve dose control.** 
    - Could enable alternate delivery scenarios.
    - May be suitable for delivery by lesser-skilled health care workers.
  - Potential to increase acceptability: likely to be more acceptable due to the reduced pain of delivery (compared to injectable presentations).
    - Potential to reduce stock-outs since the innovation has a single component to be procured, distributed, and tracked.
  - May improve safety by reducing risk of contamination and needlestick injuries.
  - Potential to reduce overall delivery costs:
    - May reduce storage and transportation costs since sublingual dosage forms are extremely compact and eliminate the need to store and transport any components out of the cold chain.
    - May **save health care worker time**, as easy to use.
  - Have the potential to increase immunogenicity compared to a dropper/sprayer.



#### **KEY CHALLENGES**

- For infants and young children, the dry sublingual dosage forms may need to be reconstituted and then administered with a liquid dropper under the tongue to address the potential risk of choking which negates some of the benefits for this age group.
- Limited applicability for subunit and non-live vaccines unless combined with a mucosal adjuvant

- Important attribute for at least 2 settings or for the 3 settings based on the country consultation (see slide 3)
  - Important attribute for campaigns or routine facility-based immunisation based on country consultation (see slide 3)

# Sublingual dosage forms: Rationale for prioritisation



- Based on the analysis, sublingual dosage forms are included in a 'maybe' category for prioritisation and the Steering Committee is requested to provide advice on whether this innovation should be prioritised or not for Phase II.
- While the technology may yield high public health benefits, its applicability to subunit and non-live vaccines is limited without the availability of a mucosal adjuvant and advancement of adjuvants is outside of the purview of VIPS.

#### Additional important information to be analysed in phase II (if prioritised for Phase II):

- Vaccine specific reviews of technical feasibility

   especially for products requiring a mucosal adjuvant.
- Vaccine specific reviews of the public health value proposition – especially for products targeting younger age groups.





BILL& MELINDA GATES foundation



